Categorical aspects of equivariant homotopy (Q1923798)

From MaRDI portal





scientific article; zbMATH DE number 934055
Language Label Description Also known as
English
Categorical aspects of equivariant homotopy
scientific article; zbMATH DE number 934055

    Statements

    Categorical aspects of equivariant homotopy (English)
    0 references
    0 references
    0 references
    3 February 1997
    0 references
    Let \({\mathcal A}\) and \({\mathcal C}\) be simplicially enriched categories and \(T:{\mathcal A}^{op} \times{\mathcal A}\to{\mathcal C}\) a simplicially enriched functor. The authors define a homotopy coherent end \(\oint_A T(A,A)\) and dually a homotopy coherent coend \(\oint^A T(A,A)\). In particular, if \({\mathcal A}\) is the orbit category \({\mathcal O} (G)\) of a discrete group \(G\) and \(T\) an \({\mathcal O} (G)\)-diagram of simplicial sets then Elmendorf's coalescence \(c\) [\textit{A. D. Elmendorf}, Trans. Am. Math. Soc. 277, 275-284 (1983; Zbl 0521.57027)] is obtained as the left homotopy Kan extension \[ \oint^{G/H} T(G/H) \overline \otimes G/H. \] At the end, an excellent enriched version of Elmendorf's results is presented.
    0 references
    equivariant homotopy
    0 references
    homotopy coherence
    0 references
    simplicially enriched categories
    0 references
    orbit category
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references