The Cauchy integral, analytic capacity, and uniform rectifiability (Q1924340)

From MaRDI portal





scientific article; zbMATH DE number 935303
Language Label Description Also known as
English
The Cauchy integral, analytic capacity, and uniform rectifiability
scientific article; zbMATH DE number 935303

    Statements

    The Cauchy integral, analytic capacity, and uniform rectifiability (English)
    0 references
    0 references
    0 references
    0 references
    7 April 1998
    0 references
    Let \(E\) be a closed subset of the complex plane. If there exists some constant \(0<M<\infty\) such that \(r/M \leq \mathcal H^{1} (E\cap \Delta (z,r))\leq rM\) for all \(z\in E\) and \(0<r<\text{diam} E\), then we say \(E\) is Ahlfors-David or (AD)-regular. Here \(\mathcal H^{1}\) is the 1-dimensional Hausdorff measure and \(\Delta (z,r)\) the closed disc with center \(z\) and radius \(r\). The authors prove that if \(E\) is (AD)-regular then (a) the Cauchy integral operator, \(C_{E}\), is bounded in \(L^{2}(E)\) if and only if \(E\) is contained in a AD-regular curve and (b) the analytic capacity of \(E\) is zero if and only if \(\mathcal H ^{1} (E\cap \Gamma) = 0\) for every rectifiable curve \(\Gamma\). In the case that \(E\) is a rectifiable curve, Theorem (a) was proved by \textit{G. David} [Ann. Sci. Éc. Norm. Supér., IV. Sér. 17, 157-189 (1984; Zbl 0537.42016)]; it follows immediately that if \(E\) is contained in an AD-regular curve then \(C_{E}\) is bounded in \(L^{2}(E)\). The proof of the converse is the heart of the current paper. Once (a) has been established, the authors can utilize a result of \textit{M. Christ} [Regional Conference Series in Mathematics 77. Providence, RI: American Mathematical Society, 132 p. (1990; Zbl 0745.42008); Colloq. Math. 60/61, No. 2, 601-628 (1990; Zbl 0758.42009)] which relates the \(L^{2}\) boundedness of \(C_{E}\) and the analytic capacity of \(E\) for AD-regular sets.
    0 references
    Ahlfors-David regular set
    0 references
    Hausdorff measure
    0 references
    Cauchy integral operator
    0 references
    AD-regular curve
    0 references
    rectifiable curve
    0 references
    analytic capacity
    0 references
    AD-regular sets
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references