A note on \(p\)-nuclear operators (Q1924833)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on \(p\)-nuclear operators |
scientific article; zbMATH DE number 937444
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on \(p\)-nuclear operators |
scientific article; zbMATH DE number 937444 |
Statements
A note on \(p\)-nuclear operators (English)
0 references
21 November 1996
0 references
Let \(X\) be a Banach space and let \(1\leq r< +\infty\). We prove that \(X^*\) is isomorphic to a subspace of an \(L^r (\mu)\)-space if and only if the operator \((\alpha_n)\in \ell_r\to \sum \alpha_n x_n\in X\) is \(s\)-nuclear whenever \(\sum |x_n |^s< +\infty\), \(s\) being the conjugate exponent for \(r\).
0 references
\(p\)-nuclear operators
0 references
Banach spaces
0 references
0.9283414
0 references
0.92132616
0 references
0.9123791
0 references
0 references
0.90742224
0 references
0.90700734
0 references
0.8991008
0 references