A note on \(p\)-nuclear operators (Q1924833)

From MaRDI portal





scientific article; zbMATH DE number 937444
Language Label Description Also known as
English
A note on \(p\)-nuclear operators
scientific article; zbMATH DE number 937444

    Statements

    A note on \(p\)-nuclear operators (English)
    0 references
    21 November 1996
    0 references
    Let \(X\) be a Banach space and let \(1\leq r< +\infty\). We prove that \(X^*\) is isomorphic to a subspace of an \(L^r (\mu)\)-space if and only if the operator \((\alpha_n)\in \ell_r\to \sum \alpha_n x_n\in X\) is \(s\)-nuclear whenever \(\sum |x_n |^s< +\infty\), \(s\) being the conjugate exponent for \(r\).
    0 references
    \(p\)-nuclear operators
    0 references
    Banach spaces
    0 references
    0 references

    Identifiers