On the Bergman space norm of the Cesàro operator (Q1924990)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the Bergman space norm of the Cesàro operator |
scientific article; zbMATH DE number 938613
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the Bergman space norm of the Cesàro operator |
scientific article; zbMATH DE number 938613 |
Statements
On the Bergman space norm of the Cesàro operator (English)
0 references
9 April 1997
0 references
We determine the exact values of the norm and the spectrum for the Cesàro operator \(C_p\) on the Bergman spaces \(A^p\) for \(p\geq 4\) and give estimates for the norm and spectrum for \(1\leq p<4\). For \(p\geq 4\) the values are \(|C_p|=p/2\) and \(\sigma(C_p)= \{z:|z-p/4|\leq p/4\}\). We also find, as a byproduct, the spectra of certain composition operators on \(A^p\). Further a general necessary condition is given for \(C\) to be bounded on certain Banach spaces of analytic functions.
0 references
exact values of the norm
0 references
spectrum
0 references
Cesàro operator
0 references
Bergman spaces
0 references
composition operators
0 references
Banach spaces of analytic functions
0 references
0.9456445
0 references
0.94385594
0 references
0.9395036
0 references
0.93521404
0 references