Rational operator functions and Bezoutian operator vessels (Q1925105)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Rational operator functions and Bezoutian operator vessels |
scientific article; zbMATH DE number 938767
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Rational operator functions and Bezoutian operator vessels |
scientific article; zbMATH DE number 938767 |
Statements
Rational operator functions and Bezoutian operator vessels (English)
0 references
28 August 2000
0 references
In previous work the author has developed a theory of operator vessels associated with operators \(A_1,A_2,\dots, A_n,B_1,B_2,\dots,B_n\) on a Banach space such that the differences \(A_j-B_j\) are small (e.g., of finite rank). A special kind of vessel can be constructed when the operators \(A_j,B_j\) are obtained as rational functions of operators \(A, B\) (i.e., \(A_j=r_j(A)\) and \(B_j=r_j(B))\) with rank one difference \(A-B\). The author makes a general conjecture about sufficient conditions under which a given vessel can be identified with one of the special kind. He proves this conjecture for \(n=2\).
0 references
operator colligations
0 references
operator vessels
0 references
Livsic characteristic function
0 references
invariant subspaces
0 references
rational functions of operators
0 references