The kernel of the reciprocity map of simple normal crossing varieties over finite fields (Q1932215)

From MaRDI portal





scientific article; zbMATH DE number 6126567
Language Label Description Also known as
English
The kernel of the reciprocity map of simple normal crossing varieties over finite fields
scientific article; zbMATH DE number 6126567

    Statements

    The kernel of the reciprocity map of simple normal crossing varieties over finite fields (English)
    0 references
    0 references
    17 January 2013
    0 references
    Summary: For a smooth and proper variety \(Y\) over a finite field \(k\) the reciprocity map \(\rho^Y: \text{CH}_0(Y) \to \pi_1^{ab}(Y)\) is injective with dense image. For a proper simple normal crossing variety this is no longer true in general. In this paper we give a discription of the kernel and cokernel of the reciprocity map in terms of homology groups of a complex filled with descent data using an algebraic Seifert-van-Kampen theorem. Furthermore, we give a new criterion for the injectivity of the reciprocity map for proper simple normal crossing varieties over finite fields.
    0 references
    higher dimensional class field theory
    0 references
    reciprocity map
    0 references
    abelianized fundamental group
    0 references
    Seifert-van Kampen theorem
    0 references
    simple normal crossing varieties over finite fields
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references