Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems (Q1932399)

From MaRDI portal





scientific article; zbMATH DE number 6126856
Language Label Description Also known as
English
Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems
scientific article; zbMATH DE number 6126856

    Statements

    Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems (English)
    0 references
    0 references
    0 references
    18 January 2013
    0 references
    The authors consider the ground state solutions of the Lane-Emden system with Henon type weights \(-\Delta u =|x|^\beta |v|^{q-1}v\), \(-\Delta v =|x|^\alpha |u|^{p-1}u\) in the unit ball of \(\mathbb{R}^N\) with Dirichlet boundary conditions. They show that ground state solutions always have definite sign in the ball and exhibit a foliated Schwarz symmetry with respect to a unit vector of \(\mathbb{R}^N\). They also give precise conditions on the parameters under which the ground state solutions are not radially symmetric.
    0 references
    Hamiltonian elliptic systems
    0 references
    Hénon weights
    0 references
    supercritical problems
    0 references
    Schwarz foliated symmetry
    0 references
    symmetry breaking
    0 references
    ground state solution
    0 references

    Identifiers