Factorizing matrices by Dirichlet multiplication (Q1938695)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Factorizing matrices by Dirichlet multiplication |
scientific article; zbMATH DE number 6138422
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Factorizing matrices by Dirichlet multiplication |
scientific article; zbMATH DE number 6138422 |
Statements
Factorizing matrices by Dirichlet multiplication (English)
0 references
22 February 2013
0 references
A Dirichlet multiplier is a matrix \[ \left [\begin{matrix} a_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ a_2 & a_1 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ a_3 & 0 & a_1 & 0 & 0 & 0 & 0 & 0 & \ldots \\ a_4 & a_2 & 0 & a_1 & 0 & 0 & 0 & 0 & \ldots \\ a_5 & 0 & 0 & 0 & a_1 & 0 & 0 & 0 & \ldots \\ a_6 & a_3 & a_2 & 0 & 0 & a_1 & 0 & 0 & \ldots \\ a_7 & 0 & 0 & 0 & 0 & 0 & a_1 & 0 & \ldots \\ a_8 & a_4 & 0 & a_2 & 0 & 0 & 0 & a_1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{matrix} \right] . \] where \(a_1, a_2, \ldots\) is a sequence of numbers. Using finite submatrices of Dirichlet multipliers, the author shows that any nonsingular matrix is a product of Dirichlet multipliers. He also gives an efficient algorithm for a numerical factorization of such a matrix.
0 references
Dirichlet multiplication
0 references
matrix factorization
0 references
Dirichlet series
0 references
fast transform
0 references
lifting schemas
0 references
algorithm
0 references