Initial boundary value problem for generalized Zakharov equations. (Q1941781)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Initial boundary value problem for generalized Zakharov equations. |
scientific article; zbMATH DE number 6147976
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Initial boundary value problem for generalized Zakharov equations. |
scientific article; zbMATH DE number 6147976 |
Statements
Initial boundary value problem for generalized Zakharov equations. (English)
0 references
21 March 2013
0 references
The authors consider the following generalized Zakharov system \[ \begin{cases} iE_t + \Delta E - H^2\Delta ^2E - nE &= 0 \\ n_{tt} - \Delta n + H^2\Delta ^2n - \Delta | E| ^2 &= 0, \end{cases} \] where \(H\) is a dimensionless parameter, \(E\: \mathbb {R}^{+}\times \Omega \to \mathbb {C}^2\) and \(n\: \mathbb {R}^{+}\times \Omega \to \mathbb {R}\) with \(\Omega \subset \mathbb {C}^2\) a bounded smooth domain. The authors prove that the initial value problem \[ E| _{t = 0} = E_0(x), \;n| _{t=0} = n_0(x), \;n_t| _{t=0} = n_1(x) \] with boundary conditions \[ E| _{\partial \Omega } = \frac {\partial E}{\partial \nu }\Big | _{\partial \Omega } = \frac {\partial {(\nabla E)}} {{\partial \nu }}\Big | _{\partial \Omega } = 0 \qquad n| _{\partial \Omega } = \frac {\partial (\nabla n)}{\partial \nu }\Big | _{\partial \Omega } = 0 \] has a unique global generalized solution. The proof proceeds by Galerkin approximation and a priori integral estimates.
0 references
modified Zakharov equations
0 references
global solution
0 references
Galerkin method
0 references