Joint eigenfunctions of invariant differential operators on the quaternion Heisenberg group (Q1945482)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Joint eigenfunctions of invariant differential operators on the quaternion Heisenberg group |
scientific article; zbMATH DE number 6151451
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Joint eigenfunctions of invariant differential operators on the quaternion Heisenberg group |
scientific article; zbMATH DE number 6151451 |
Statements
Joint eigenfunctions of invariant differential operators on the quaternion Heisenberg group (English)
0 references
8 April 2013
0 references
The authors consider the quaternion Heisenberg group \(G\) with the group operation given by \((x,t)(y,s)=\left(x+y,t+s+\frac{\operatorname{Im}(\bar yx)}2\right)\), where \((a,b)\in\mathbb{R}^4\times\mathbb{R}^3\) and \(\operatorname{Im}z\) denotes the imaginary part of a quaternion number \(z=z_0+z_1\mathbf{i}_1+z_2\mathbf{i}_2+z_3\mathbf{i}_3\). The left-invariant vector fields \(X_i,T_j\), where \(i\in\{0,1,2,3\}\), \(j\in\{1,2,3\}\), and \(X_0f[(x,t)]=\left.\frac{\text{d}}{\text{d}s}\right|_{s=0}f[(x,t)(s,0)]\), \(X_if[(x,t)]=\left.\frac{\text{d}}{\text{d}s}\right|_{s=0}f[(x,t)(s\mathbf{i}_i,0)]\), \(T_if[(x,t)]=\left.\frac{\text{d}}{\text{d}s}\right|_{s=0}f[(x,t)(0,s\mathbf{i}_i)]\), form a basis for the Lie algebra of left-invariant vector fields on \(G\). The quaternionic Heisenberg fan is the real joint spectrum of the sub-Laplacian \(\mathfrak{L}=-\sum_{i=0}X_i^2\) and the Dirac type operator \(T=\sum_{i=1}^3\mathbf{i}_iT_i\) [\textit{R. S. Strichartz}, J. Funct. Anal. 87, No. 1, 51--148 (1989; Zbl 0694.43008); corrigendum ibid. 109, No. 2, 457--460 (1992; Zbl 0789.43004)]. It is the set \(\{(2(n+1)\lambda,\pm\lambda)\mid n\in\mathbb{N},\lambda>0\}\). The authors characterize the joint eigenfunctions \(f\) of \(\mathfrak{L}\) and \(T\) such that the values of \(f\) belong to the complexification of the vector space \(\mathbb{H}\) and the eigenvalues belong to the quaternionic Heisenberg fan.
0 references
Heisenberg group
0 references
sub-Laplacian
0 references
Dirac type operator
0 references
joint eigenfunction
0 references
Heisenberg fan
0 references
0.84120774
0 references
0.7825573
0 references
0.7654032
0 references
0.7477526
0 references
0.74744344
0 references
0.73702997
0 references
0.7271306
0 references