Multipoint Hermite-Padé approximations for beta functions (Q1957036)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Multipoint Hermite-Padé approximations for beta functions |
scientific article; zbMATH DE number 5791039
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multipoint Hermite-Padé approximations for beta functions |
scientific article; zbMATH DE number 5791039 |
Statements
Multipoint Hermite-Padé approximations for beta functions (English)
0 references
24 September 2010
0 references
The authors construct the multipoint Hermite-Padé approximant \(P_n/Q_n\) to the function \(f_\alpha(z)=B(\alpha,z)\) meromorphic on the entire complex plane and having simple poles at the points \(-m\) (\(m\in\mathbb{Z}\)), where \(B(p,q)=\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}\) is the beta function. \(P_n/Q_n\) is defined as follows: \(R_n(z)=Q_n(z)f_\alpha(z)-P_n(z)\) and satisfy the interpolation condition \(R_n(\beta +k)=0\) for some \(\beta>0\) and \(k=0, \ldots,2n\). They prove that the uniform limite distribution of the zeros of the polynomials \(Q_n\) exists.
0 references
Hermite-Padé approximations
0 references
beta function
0 references
Nikishin system
0 references
logarithmic potential
0 references
asyptotic behavior
0 references
Mittag-Leffer expansion
0 references
Rodrigues formula
0 references
0 references
0 references
0 references
0 references
0.95102286
0 references
0.9322942
0 references
0.8889419
0 references
0.87316215
0 references
0.8709707
0 references