Rate of convergence for the absolutely \((C,a)\) summable Fourier series of functions of bounded variation (Q1963949)

From MaRDI portal





scientific article; zbMATH DE number 1398582
Language Label Description Also known as
English
Rate of convergence for the absolutely \((C,a)\) summable Fourier series of functions of bounded variation
scientific article; zbMATH DE number 1398582

    Statements

    Rate of convergence for the absolutely \((C,a)\) summable Fourier series of functions of bounded variation (English)
    0 references
    0 references
    0 references
    15 January 2001
    0 references
    Let \(f\) be a \(2\pi\)-periodic and Lebesgue integrable function on \([-\pi,\pi]\). Let \(S^\alpha_n(f,x)\) denote the \(n\)th \((C,\alpha)\) mean of the Fourier series of \(f(x)\). It is well known that if \(f\in \text{BV}[-\pi, \pi]\) then its Fourier series is summable \(|C,\alpha|\), \(\alpha>0\), that is to say, \(\sum^\infty_{n=1}|S^\alpha_n- S^\alpha_{n- 1}|< \infty\). Using a result of Riesz if follows that \[ |S^\alpha_n(f, x)-\textstyle{{1\over 2}} \{f(x+ 0)+ f(x- 0)\}|\leq \displaystyle{\sum^\infty_{k= n+1}|S^\alpha_k- S^\alpha_{k-1}|\equiv R^\alpha_n(f, x)}. \] The authors in this paper examine the rate of convergence of \(R^\alpha_n(f, x)\). They prove that if \(f\in \text{BV}[-\pi, \pi]\), then for \(\alpha> 0\), \(n\geq 2\), \[ R^\alpha_n(f, x)\leq {4\alpha\over n\pi} \sum^n_{k=1} \text{Var}^{\pi/k}_0 (\varphi_x),\quad x\in R, \] where \[ \varphi_x(t)= \begin{cases} {1\over 2} f(x+ t)+ f(x- t)- (f(x+ 0)+ f(x- 0)),\quad & t\neq 0,\\ 0,\quad & t= 0.\end{cases}. \]
    0 references
    absolute Cesàro summability
    0 references
    Fourier series
    0 references
    rate of convergence
    0 references
    0 references

    Identifiers