Estimation of the dependence parameter in linear regression with long-range-dependent errors (Q1965876)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Estimation of the dependence parameter in linear regression with long-range-dependent errors |
scientific article; zbMATH DE number 1409142
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Estimation of the dependence parameter in linear regression with long-range-dependent errors |
scientific article; zbMATH DE number 1409142 |
Statements
Estimation of the dependence parameter in linear regression with long-range-dependent errors (English)
0 references
1 March 2000
0 references
The authors establish the consistency and root-n asymptotic normality of the exact maximum likehood estimator of the dependence parameter in linear regression models where the errors are a nondecreasing function of a long-range-dependent Gaussian process. The spectral density of the Gaussian process is supposed to be unbounded at the origin. This paper generalizes some of the results of \textit{R. Dahlhaus} [Ann. Stat. 17, No. 4, 1749-1766 (1989; Zbl 0703.62091)] to linear regression models with non-Gaussian long-range-dependent errors.
0 references
unbounded spectral density
0 references
maximum likehood estimator
0 references
asymptotic normality
0 references
0 references
0 references
0 references
0.9374394
0 references
0.9206191
0 references
0.9138968
0 references