Blockwise perturbation theory for block \(p\)-cyclic stochastic matrices (Q1968790)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Blockwise perturbation theory for block \(p\)-cyclic stochastic matrices |
scientific article; zbMATH DE number 1419746
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Blockwise perturbation theory for block \(p\)-cyclic stochastic matrices |
scientific article; zbMATH DE number 1419746 |
Statements
Blockwise perturbation theory for block \(p\)-cyclic stochastic matrices (English)
0 references
12 November 2000
0 references
Let \(P\) be a block \(p\)-cyclic stochastic matrix with stationary distribution correspondingly partitioned as \(\pi^T:=(\pi_1^T, \dots, \pi_p^T)\). The article establishes the relative error bound for \(\pi_i^T\) when each block of \(P\) receives a small relative perturbation, generalizing a result of \textit{G. Stewart} [Numer. Math. 65, No. 1, 135-141 (1993; Zbl 0797.15019)].
0 references
block \(p\)-cyclic stochastic matrix
0 references
blockwise perturbation
0 references
Markov chain
0 references
relative error bound
0 references
stationary distribution
0 references
0.8931244
0 references
0.89303356
0 references
0.8896594
0 references
0 references
0.8798742
0 references
0.8791974
0 references