Validity of WH-frame bound conditions depends on lattice parameters (Q1969041)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Validity of WH-frame bound conditions depends on lattice parameters |
scientific article; zbMATH DE number 1415640
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Validity of WH-frame bound conditions depends on lattice parameters |
scientific article; zbMATH DE number 1415640 |
Statements
Validity of WH-frame bound conditions depends on lattice parameters (English)
0 references
12 July 2000
0 references
It is well known that when \(g \in L^2(\mathbb R)\) is ``sufficiently well-behaved'', then there exist constants \(a_c, b_c >0\) such that \(\{e^{2\pi mbx}(g(x-na)\}_{m,n\in \mathbb Z}\) is a frame for \(L^2(\mathbb R)\) for all \(a\in ]0,a_c], b\in ]0,b_c]\). The present paper shows by examples what can happen when \(g\) is not ``sufficiently well-behaved''. An example of a function \(g\neq 0\) for which no such numbers \(a_c, b_c\) exist is given. Also, an (amazing!) example is given, where (i) \(\{e^{2\pi mbx}(g(x-na)\}_{m,n\in \mathbb Z}\) is a frame for all \(a= \frac 1{2m}, \;m\in {\mathbb N}\) and \(b\in ]0,1[\), and (ii) \(\{e^{2\pi mbx}(g(x-na)\}_{m,n\in \mathbb Z}\) is never a frame when \(a= \frac{l}{3^k}, \;k,l \in {\mathbb N}\) and \(b\in ]0,1[\).
0 references
Gabor frame
0 references
lower frame bound
0 references
upper frame bound
0 references
Weyl-Heisenberg frame
0 references
0 references
0.80688214
0 references
0.7963039
0 references
0.79047203
0 references
0.7903253
0 references
0.7872193
0 references
0.78705126
0 references
0.78648496
0 references
0.7862073
0 references
0.7861111
0 references