On certain length functions associated to a system of parameters in local rings (Q1970065)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On certain length functions associated to a system of parameters in local rings |
scientific article; zbMATH DE number 1417648
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On certain length functions associated to a system of parameters in local rings |
scientific article; zbMATH DE number 1417648 |
Statements
On certain length functions associated to a system of parameters in local rings (English)
0 references
4 May 2000
0 references
Let \((A, \mathfrak m)\) be a Noetherian local ring, \(M\) a finitely generated \(A\)-module of dimension \(d\) and \(\mathbf x = x_1\), \dots, \(x_d\) a system of parameters for \(M\). In the present paper the authors consider a submodule of \(M\): \[ Q_M(\mathbf x) = \bigcup_t (x_1^{t+1}, \dots, x_d^{t+1})M: (x_1 \cdots x_d)^t. \] \textit{M. Hochster} [Nagoya Math. J. 51, 25-43 (1973; Zbl 0268.13004)] posed a conjecture: \(A \neq Q_A(\mathbf x)\) for any system of parameters for \(A\). It is called the monomial conjecture and Hochster showed that \(A \neq Q_A(x_1^n, \dots, x_d^n)\) for any system of parameters \(x_1\), \dots, \(x_d\) and sufficiently large \(n\). The authors show the uniformity of \(n\). That is, there is an integer \(N\) such that \(M \neq Q_M(x_1^n, \dots, x_d^n)\) for any system of parameters \(x_1\), \dots, \(x_d\) and integer \(n > N\).
0 references
system of parameters
0 references
monomial conjecture
0 references
0.9484975
0 references
0.8911768
0 references
0.88093984
0 references
0.8806935
0 references
0.87832177
0 references
0 references
0.8729304
0 references
0.87273866
0 references
0.87024474
0 references