Stable subspaces of matrix pairs (Q1970504)

From MaRDI portal





scientific article; zbMATH DE number 1420044
Language Label Description Also known as
English
Stable subspaces of matrix pairs
scientific article; zbMATH DE number 1420044

    Statements

    Stable subspaces of matrix pairs (English)
    0 references
    0 references
    29 January 2001
    0 references
    Let \(A:\mathbb{C}^n\to\mathbb{C}^n\) and \(B:\mathbb{C}^m\to\mathbb{C}^n\) be linear maps. A subspace \({\mathcal N}\subseteq \mathbb{C}^n\) is called \((A,B)\)-invariant, if \(A({\mathcal N}) \subseteq {\mathcal N}+ B(\mathbb{C}^m)\). An \((A,B)\)-invariant subspace is called \((A,B)\)-stable if for any pair \((A',B')\)-close to \((A,B)\) there exists an \((A',B')\)-invariant subspace \({\mathcal N}'\) of \(\mathbb{C}^n\) which is close to \({\mathcal N}\) (say in topology of the corresponding Grassmannian). The authors prove several conditions under which an \((A,B)\)-invariant subspace is acutally \((A,B)\)-stable.
    0 references
    \((A,B)\) stability
    0 references
    \((A,B)\) invariance
    0 references
    structural stability
    0 references

    Identifiers