Asymptotic evaluation of the sat-function for \(r\)-stars (Q1972152)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotic evaluation of the sat-function for \(r\)-stars |
scientific article; zbMATH DE number 1423750
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotic evaluation of the sat-function for \(r\)-stars |
scientific article; zbMATH DE number 1423750 |
Statements
Asymptotic evaluation of the sat-function for \(r\)-stars (English)
0 references
23 March 2000
0 references
Let \(S^r_m\) be the \(r\)-uniform set system on \(m\) vertices consisting of all \(r\)-tuples containing a given vertex. The author proves the following result: Let \(m> r\geq 2\) and \(S= S^r_m\). Then \[ {m-r\over 2}\begin{pmatrix} n\\ r-1\end{pmatrix}\geq \text{sat}(n, S)\geq m-\text{sat}(n, S)\geq {m-r\over 2}\begin{pmatrix} n\\ r-1\end{pmatrix}- O(n^{r- 4/3}). \]
0 references
asymptotic evaluation
0 references
sat-function
0 references