Counterexamples in indefinite Sturm--Liouville problems (Q1972644)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Counterexamples in indefinite Sturm--Liouville problems |
scientific article; zbMATH DE number 1431674
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Counterexamples in indefinite Sturm--Liouville problems |
scientific article; zbMATH DE number 1431674 |
Statements
Counterexamples in indefinite Sturm--Liouville problems (English)
0 references
13 April 2000
0 references
The authors consider the spectral problem \[ -u''(x)=\lambda\omega(x) u(x),\quad x\in(-1,1), \quad u(-1)=u(1)=0, \] with \(\omega(x) \) being a sign-changing function. They describe some particular classes of functions \(\omega(x) \) for which the eigenfunctions to this problem do not form a~Riesz basis for the weighted space \(L_{2,\omega}(-1,1)\) under the norm \(\|u\|_{L_{2 ,\omega}(-1,1)}=\|\sqrt{|\omega|}u\|_{L_2 (-1,1)}\).
0 references
indefinite spectral problems
0 references
Riesz basis
0 references
sufficient conditions
0 references
counterexamples
0 references