Hamilton-Jacobi-Bellman equation under states constraints (Q1973945)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hamilton-Jacobi-Bellman equation under states constraints |
scientific article; zbMATH DE number 1441387
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hamilton-Jacobi-Bellman equation under states constraints |
scientific article; zbMATH DE number 1441387 |
Statements
Hamilton-Jacobi-Bellman equation under states constraints (English)
0 references
5 February 2001
0 references
This paper is concerned with the uniqueness of discontinuous solutions of the Hamilton-Jacobi-Bellman equation \[ \begin{cases} -{\partial V\over\partial t} (t,x)+ H(t,x,{\partial V\over\partial x}(t, x))= 0,\\ V(t,x)= \psi(x)\text{ when }g(T,x)\leq 0,\end{cases} \] where \(H(t,x,p)= \sup_{v\in F(t,x)}\langle p,v\rangle\), arising in Mayer's problem under state constraints \[ \min\left\{\psi(x(T))\left|\begin{aligned} & x'(t)\in F(t,x(t))\text{ a.e. in }[0,T],\\ & g(t,x(t))\leq 0,\quad t\in[0,T],\\ & x(0)= \xi_0,\\ & x(\cdot)\in AC(0,T),\end{aligned}\right. \right\}, \] where \(T> 0\), \(F:[0,T]\times \mathbb{R}^n\to \mathbb{R}^n\), \(g: \mathbb{R}\times \mathbb{R}^n\to \mathbb{R}\), \(\xi_0\in \mathbb{R}^n\), \(\psi: \mathbb{R}^n\to \mathbb{R}\cup\{+ \infty\}\). The author used two types of discontinuous solutions, bilateral solutions and contingent solutions, and showed that they coincide with the value function \(V\) for state constraints, that are backward invariant and forward viable.
0 references
uniqueness of discontinuous solutions
0 references
bilateral solutions
0 references
contingent solutions
0 references
0 references
0 references