Maximal number of unstable hyperplanes for a Steiner bundle (Q1974149)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Maximal number of unstable hyperplanes for a Steiner bundle |
scientific article; zbMATH DE number 1441738
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Maximal number of unstable hyperplanes for a Steiner bundle |
scientific article; zbMATH DE number 1441738 |
Statements
Maximal number of unstable hyperplanes for a Steiner bundle (English)
0 references
15 January 2001
0 references
Let \({\mathcal S}_{n,k}\) denote the family of Steiner's bundle \(S\) on \(\mathbb{P}_n\) are defined by an exact sequence \((k>0)\) \[ 0\to k{\mathcal O}_{\mathbb{P}_n} (-1)\to (n+k){\mathcal O}_{\mathbb{P}_n}\to S\to 0. \] We show the following result: Let \(S\in{\mathcal S}_{n,k}\) and \(H_1,\dots, H_{n+k+2}\) be distincts hyperplanes such that \(h^0 (S_{H_i}^\vee)\neq 0\). Then it exists a rational normal curve \(C_n \subset \mathbb{P}_n^\vee\) such that \(H_i\in C_n\) for \(i= 1,\dots, n+k+ 2\) and \(S\simeq E_{n+k-1} (C_n)\), where \(E_{n+k-1} (C_n)\) is the Schwarzenberger bundle on \(\mathbb{P}_n\) which belongs to \({\mathcal S}_{n,k}\) associated to \(C_n \subset \mathbb{P}_n^\vee\). This implies that a Steiner bundle \(S\in{\mathcal S}_{n,k}\), if it is not a Schwarzenberger bundle, then it possesses no more than \((n+k+1)\) unstable hyperplanes; this proves in any case a result of \textit{I. Dolgachev} and \textit{M. Kapranov} [Duke Math. J. 71, No. 3, 633-664 (1993; Zbl 0804.14007), theorem 7.2] about logarithmic bundles.
0 references
unstable hyperplane
0 references
Steiner bundle
0 references
Schwarzenberger bundle
0 references
logarithmic bundles
0 references
0.9293289
0 references
0 references
0.83888483
0 references
0.83819807
0 references
0 references
0.8329655
0 references
0.8298651
0 references