Differential subordinations for fractional-linear transformations (Q1975939)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Differential subordinations for fractional-linear transformations |
scientific article; zbMATH DE number 1441871
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Differential subordinations for fractional-linear transformations |
scientific article; zbMATH DE number 1441871 |
Statements
Differential subordinations for fractional-linear transformations (English)
0 references
26 November 2000
0 references
Exploiting the ideas due to \textit{S. Miller} and \textit{P. T. Mocanu} [Mich. Math. J. 28, 157-171 (1981; Zbl 0456.30022)] the authors established various relations of the following type: \(\gamma\geq 0\), if the functions \(p(z)+ \gamma zp'(z)\) or \(p(z)+\gamma zp'(z)/p(z)\) are subordinated to \(h(A,B;z)\) in the unit disk then \(p(z)\) is subordinated to a function \(h(\widetilde A,\widetilde B;z)\) (with possibly different parameters), \(h(A,B;z)=(1+Az)(1+Bz)^{-1}\), \(-1\leq B<A\).
0 references
0.91709816
0 references
0.9170229
0 references
0.9170227
0 references
0.8982275
0 references
0.89708924
0 references
0.89491445
0 references
0.88704294
0 references