On the convergence of the integrals of a truncated Henstock-Kurzweil integrable function (Q1978859)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the convergence of the integrals of a truncated Henstock-Kurzweil integrable function |
scientific article; zbMATH DE number 1449416
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the convergence of the integrals of a truncated Henstock-Kurzweil integrable function |
scientific article; zbMATH DE number 1449416 |
Statements
On the convergence of the integrals of a truncated Henstock-Kurzweil integrable function (English)
0 references
21 May 2000
0 references
The function \(f:[a,b] \to \mathbb R\) is Kurzweil-Henstock integrable with \(\int _a^bf=A\) if and only if f is measurable and there are increasing sequences of positive integers \(M_k, N_k \) and a decreasing sequence of gauges \(\delta _k\) such that for all \(k\) and \(\delta _k\)-fine tagged partition \(P\) we have \(|S(f,P) - S(f_k,P)|<1/k\) and \(|S(f_k,P) - A|<1/k\), where \(S\) stands for the Riemann sum and \(f_k(x) = f(x)\) if \(-N_k \leq f(x) \leq M_k\), \(f_k(x) = M_k\) if \(f(x) \geq M_k\) and \(f_k(x) = -N_k\) if \(f(x) \leq -N_k\).
0 references
convergence theorem
0 references
Kurzweil-Henstock integral
0 references
0.92362726
0 references
0.92089915
0 references
0.91374546
0 references
0 references
0.9002713
0 references
0.89653504
0 references
0.8942774
0 references
0.89338934
0 references