Upper and lower approximations of Perron integrable functions (Q1979041)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Upper and lower approximations of Perron integrable functions |
scientific article; zbMATH DE number 1450287
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Upper and lower approximations of Perron integrable functions |
scientific article; zbMATH DE number 1450287 |
Statements
Upper and lower approximations of Perron integrable functions (English)
0 references
22 May 2000
0 references
A characterization of Perron integrability of a function \(f:[a,b] \to \overline {\mathbb R}\) is given using upper and lower approximations of \(f\) which are lower and upper semi-Baire \(1\). For example: \(f\) is Perron integrable if and only if for every \(\varepsilon >0\) there exist two integrable functions \(g_\varepsilon \) and \(h_\varepsilon \) which are upper and lower semi-Baire \(1 \), respectively, \(g_\varepsilon < \infty \), \(h_\varepsilon >-\infty \), \(g_\varepsilon \leq f\leq h_\varepsilon \) and \(\int _a^b(h_\varepsilon - g_\varepsilon) <\varepsilon \).
0 references
Perron integral
0 references
approximation
0 references
semi-Baire 1 functions
0 references
0.89225566
0 references
0.8915069
0 references
0.8866719
0 references
0.8836934
0 references