Optimal bounds for the sine and hyperbolic tangent means. IV (Q1979349)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Optimal bounds for the sine and hyperbolic tangent means. IV |
scientific article; zbMATH DE number 7390106
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Optimal bounds for the sine and hyperbolic tangent means. IV |
scientific article; zbMATH DE number 7390106 |
Statements
Optimal bounds for the sine and hyperbolic tangent means. IV (English)
0 references
2 September 2021
0 references
The authors provide optimal bounds for the sine and hyperbolic tangent means in terms of various weighted means of the arithmetic and centroidal means. The sine and hyperbolic tangent means are defined, respectively, as follows: \[ M_{\sin} (x,y)= \left\{ \begin{array}{lcl} \frac{x-y}{2\sin\left(\frac{x-y}{x+y}\right)} & \mbox{if} & x\neq y \\ x & \mbox{if} & x=y \end{array}\right. \] and \[ M_{\tanh} (x,y)= \left\{ \begin{array}{lcl} \frac{x-y}{2\tanh\left(\frac{x-y}{x+y}\right)} & \mbox{if} & x\neq y \\ x & \mbox{if} & x=y \end{array}\right.. \] For Part I and II see [the authors, ``Optimal bounds for the sine and hyperbolic tangent means'', J. Math., Punjab Univ. 52, No. 5, 77--88 (2020); J. Appl. Anal. 27, No. 1, 65--72 (2021; Zbl 1473.26042)].
0 references
sine mean
0 references
hyperbolic tangent mean
0 references
Seiffert function
0 references
0 references
0 references