Some properties concerning the analysis of generalized Wright function (Q1987442)

From MaRDI portal





scientific article; zbMATH DE number 7189435
Language Label Description Also known as
English
Some properties concerning the analysis of generalized Wright function
scientific article; zbMATH DE number 7189435

    Statements

    Some properties concerning the analysis of generalized Wright function (English)
    0 references
    0 references
    0 references
    0 references
    15 April 2020
    0 references
    The Bessel-Maitland function, also called the Wright generalized Bessel function, is defined by \(W_{\alpha ,\beta } (z)=\sum _{n=0}^{\infty }\frac{z^{n} }{n!\Gamma (\alpha n+\beta )} \quad (\beta \in \mathrm{C},\; Re\, \alpha >-1)\). Various generalizations exist, for example, \(W_{\alpha ,\beta }^{\gamma ,\delta } (z)=\sum _{n=0}^{\infty }\frac{z^{n} (\gamma )_{n} }{n!(\delta )_{n} \Gamma (\alpha n+\beta )} \quad \left((a)_{n} =\frac{\Gamma (a+n)}{\Gamma (a)} \right)\). In this paper the authors give a further generalization of this function and provide some properties and applications.
    0 references
    Write function
    0 references
    Fox-Write function
    0 references
    Mellin transform
    0 references

    Identifiers