Global existence and blowup solutions for the Gierer-Meinhardt system (Q1988404)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global existence and blowup solutions for the Gierer-Meinhardt system |
scientific article; zbMATH DE number 7192512
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global existence and blowup solutions for the Gierer-Meinhardt system |
scientific article; zbMATH DE number 7192512 |
Statements
Global existence and blowup solutions for the Gierer-Meinhardt system (English)
0 references
23 April 2020
0 references
This article discusses the study of the Gierer-Meinhardt system in the form \[ \begin{cases} u_t=\Delta u-u+\frac{u^p}{v^q} &\quad x\in \Omega, t>0\\ v_t=\Delta v-\frac{v}{R}+\frac{u^r}{Rv^s} &\quad x\in \Omega, t>0\\ \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0&\quad x\in \partial \Omega, t>0\\ u(x,0)=u_0(x)>0, v(x,0)=v_0(x)>0 &\quad x\in \Omega, \end{cases} \] where \(\Omega\) is asmooth and bounded domain in \({\mathbb R}^N\), \(p>1\), \(q,r,s>0\). There are three main results in the article which present new sufficient conditions for global existence and finite time blow-up of solutions.
0 references
global existence
0 references
blowup solutions
0 references
Gierer-Meinhardt systems
0 references
0 references
0 references