Global existence and blowup solutions for the Gierer-Meinhardt system (Q1988404)

From MaRDI portal





scientific article; zbMATH DE number 7192512
Language Label Description Also known as
English
Global existence and blowup solutions for the Gierer-Meinhardt system
scientific article; zbMATH DE number 7192512

    Statements

    Global existence and blowup solutions for the Gierer-Meinhardt system (English)
    0 references
    0 references
    0 references
    0 references
    23 April 2020
    0 references
    This article discusses the study of the Gierer-Meinhardt system in the form \[ \begin{cases} u_t=\Delta u-u+\frac{u^p}{v^q} &\quad x\in \Omega, t>0\\ v_t=\Delta v-\frac{v}{R}+\frac{u^r}{Rv^s} &\quad x\in \Omega, t>0\\ \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0&\quad x\in \partial \Omega, t>0\\ u(x,0)=u_0(x)>0, v(x,0)=v_0(x)>0 &\quad x\in \Omega, \end{cases} \] where \(\Omega\) is asmooth and bounded domain in \({\mathbb R}^N\), \(p>1\), \(q,r,s>0\). There are three main results in the article which present new sufficient conditions for global existence and finite time blow-up of solutions.
    0 references
    0 references
    global existence
    0 references
    blowup solutions
    0 references
    Gierer-Meinhardt systems
    0 references

    Identifiers