A combined Markov chain model and generalized projection nonnegative matrix factorization approach for fault diagnosis (Q1993069)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A combined Markov chain model and generalized projection nonnegative matrix factorization approach for fault diagnosis |
scientific article; zbMATH DE number 6972417
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A combined Markov chain model and generalized projection nonnegative matrix factorization approach for fault diagnosis |
scientific article; zbMATH DE number 6972417 |
Statements
A combined Markov chain model and generalized projection nonnegative matrix factorization approach for fault diagnosis (English)
0 references
5 November 2018
0 references
Summary: The presence of sets of incomplete measurements is a significant issue in the real-world application of multivariate statistical process monitoring models for industrial process fault detection. Since the missing data in the incomplete measurements are usually correlated with some of the available variables, these measurements can be used if an efficient algorithm is presented. To resolve the problem, a novel method combining Markov chain model and generalized projection nonnegative matrix factorization (MCM-GPNMF) is proposed to detect and diagnose the faults in industrial process. The basic idea of the approach is to use MCM-GPNMF to extract the dominant variables from incomplete process data and to combine them with statistical process monitoring techniques. \(T_G^2\) and \(\text{SPE}_G\) statistics are defined as online monitoring quantities for fault detection and corresponding contribution plots are also considered for fault isolation. The proposed method is applied to a 1000 MW unit boiler process. The simulation results clearly illustrate the feasibility of the proposed method.
0 references