Skew cyclic and skew \((\alpha_1 + u\alpha_2 + v\alpha_3 + uv\alpha_4)\)-constacyclic codes over \(\mathbb F_q + u\mathbb F_q + v\mathbb F_q + uv\mathbb F_q\) (Q1993392)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Skew cyclic and skew \((\alpha_1 + u\alpha_2 + v\alpha_3 + uv\alpha_4)\)-constacyclic codes over \(\mathbb F_q + u\mathbb F_q + v\mathbb F_q + uv\mathbb F_q\) |
scientific article |
Statements
Skew cyclic and skew \((\alpha_1 + u\alpha_2 + v\alpha_3 + uv\alpha_4)\)-constacyclic codes over \(\mathbb F_q + u\mathbb F_q + v\mathbb F_q + uv\mathbb F_q\) (English)
0 references
5 November 2018
0 references
Summary: In this note, we study skew cyclic and skew constacyclic codes over the ring \(\mathcal R = \mathbb F_q + u\mathbb F_q + v\mathbb F_q + uv\mathbb F_q\) where \(q = p^m\); \(p\) is an odd prime, \(u^2 = u\), \(v^2 = v\), \(uv = vu\). We show that Gray images of a skew cyclic and skew-constacyclic codes of length \(n\) over \(\mathcal R\) are skew quasi-cyclic codes of length \(4n\) over \(\mathbb F_q\) of index 4. Also, it is shown that skew \(\alpha\)-constacyclic codes are either equivalent to \(\alpha\)-constacyclic codes or \(\alpha\)-quasi-twisted codes over \(\mathcal R\). Further, structural properties, specially, generating polynomials and idempotent generators for skew cyclic and skew constacyclic codes are determined by decomposition method.
0 references
skew polynomial ring
0 references
skew cyclic code
0 references
skew quasi-cyclic code
0 references
skew constacyclic code
0 references
Gray map
0 references
generating polynomial
0 references
idempotent generator
0 references