Improved dispersion bounds for modified Fibonacci lattices (Q1996888)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Improved dispersion bounds for modified Fibonacci lattices
scientific article

    Statements

    Improved dispersion bounds for modified Fibonacci lattices (English)
    0 references
    0 references
    0 references
    26 February 2021
    0 references
    Consider point sets \(\mathcal P\) in the unit square \([0,1]^2\) consisting of \(N\) not necessarily distinct elements and let \(\mathcal B\) be the set of all axes-parallel boxes in the unit square. The authors study dispersion of \(\mathcal P\) defined as \( \text{disp }(\mathcal P):=\sup_{B\in\mathcal B, B\cap\mathcal P=\emptyset}\lambda(B) \), where \(\lambda(B)\) denotes the area of the box \(B\). Known previous results: \textit{A. Dumitrescu} and \textit{M. Jiang} [Algorithmica 66, No. 2, 225--248 (2013; Zbl 1262.68186)] proved that \( \text{disp }(\mathcal P)\ge\max(1/(N+1),5/(4(N+5))). \) \textit{S. Breneis} and \textit{A. Hinrichs} [Radon Ser. Comput. Appl. Math. 26, 117--132 (2020; Zbl 1471.11050)] constructed points with small dispersion using the Fibonacci numbers \(F_m\). The dispersion of the Fibonacci lattice \( \mathcal F_m=\{(k/F_m,\{kF_{m-2}/F_m\}):k=0,1,2,\dots,F_m-1\} \) is given by \( \text{disp }\mathcal F_m=(2(F_m-1)/F^2_m) \) for \(m\ge8\), where \(\{x\}\) denotes the fractional part of \(x\). Then the limit \(\lim_{m\to\infty}|\mathcal F_m|\text{disp }(\mathcal F_m)=2\). The central result of this paper is replacing the limit 2 by a smaller constant 1.894427\dots for the modified Fibonacci lattice \(\widetilde{\mathcal F}_m\) defined in the following way: \par \(\pi(k)=kF_{m-2}\pmod {F_m}\), \par \(s(i)=(\sqrt{5}+1)/2 \text{ if } \pi(i)<\pi(i+1) \text{ and } 1 \text{ otherwise }\), \par \(L=\sum_{i=0}^{F_m-1}s(i)\), \par \(x_k=\sum_{i=0}^{k-1}, k=0,1,\dots,F_m-1\), \par \(\widetilde{\mathcal F}_m=\{(x_k/L,x_{\pi(k)}/L),k=0,1,\dots,F_m-1\}\). \par\noindent In this case, the authors prove \par \(\lim_{m\to\infty}|\widetilde{\mathcal F}_m|\text{disp }(\widetilde{\mathcal F}_m) =1+\frac{2}{\sqrt{5}}\). For proof they use, e.g., \(F^2_{m-2}+F^2_m-3F_mF_{m-2}=(-1)^m\). Using the theory of uniform distribution of sequences it is also conjectured that the Fibonacci lattice \(\mathcal F_m\) have a smallest possible \(L_2\) discrepancy, since for \(m\le 7\) this is known. Note that in uniform distribution theory the \(s\)-dimensional dispersion is defined as follows: If \(\mathbf x_1,\mathbf x_2,\dots,\mathbf x_N\) belong to \([0,1]^s\) then the dispersion \(d_N\) of \(\mathbf x_n\) is defined by \(d_N(\mathbf x_1,\dots,\mathbf x_N)=\sup_{\mathbf x\in[0,1]^s} \min_{1\le n\le N}|\mathbf x-\mathbf x_n|\), where \(|\mathbf x-\mathbf x_n|\) is the Euclidean distance. Basic results of such dispersion are in [\textit{H. Niederreiter}, Random number generation and quasi-Monte Carlo methods. Philadelphia, PA: SIAM (1992; Zbl 0761.65002)].
    0 references
    0 references
    dispersion
    0 references
    largest empty rectangle
    0 references
    Fibonacci lattice
    0 references
    discrepancy
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references