Construction of all polynomial relations among Dedekind eta functions of level \(N\) (Q2000261)

From MaRDI portal





scientific article; zbMATH DE number 7074700
Language Label Description Also known as
English
Construction of all polynomial relations among Dedekind eta functions of level \(N\)
scientific article; zbMATH DE number 7074700

    Statements

    Construction of all polynomial relations among Dedekind eta functions of level \(N\) (English)
    0 references
    0 references
    0 references
    28 June 2019
    0 references
    The aim of this paper is to provide an algorithm to compute a Gröbner basis for the relations among Dedekind \(\eta\)-functions. Let \(\mathbb{H} = \{c\in\mathbb{C} \mid \Im(c)> 0 \}\) denote the complex upper half-plane and \[ \eta: \mathbb{H} \to \mathbb{C},\ \eta(\tau)=\exp(\pi i\tau/12)\prod_{k=1}^{\infty}(1-\exp(2\pi ik \tau))) \] Let us fix a positive integer \(N\) and let \(1 = \delta_1 < \delta_2 < \dots < \delta_n = N\) be the positive divisors of \(N\). We define \(\phi : \mathbb{Q}[E_{\delta_1} , \dots , E_{\delta_n}]\to \mathbb{Q}[\eta(\delta_1 \tau),\dots,\eta(\delta_n \tau)]\) with \(\phi(E_i)=\eta(\delta_i \tau)\) for each \(i\) where \(E_{\delta_1} , \dots , E_{\delta_n}\) is a sequence of variables. The main contribution of the paper is to compute a Gröbner basis for the kernel of \(\phi\).
    0 references
    0 references
    Dedekind \(\eta\) function
    0 references
    modular functions
    0 references
    modular equations
    0 references
    ideal of relations
    0 references
    Gröbner basis
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers