Rigidity of optimal bases for signal spaces (Q2012348)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Rigidity of optimal bases for signal spaces |
scientific article; zbMATH DE number 6754874
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Rigidity of optimal bases for signal spaces |
scientific article; zbMATH DE number 6754874 |
Statements
Rigidity of optimal bases for signal spaces (English)
0 references
31 July 2017
0 references
Let \(\Omega \subset {\mathbb R}^N\) be a smooth bounded domain. Let \((e_j)_{j=1}^{\infty}\) be an orthonormal basis of \(L^2(\Omega)\) consisting of the eigenfunctions of the Laplace operator with homogeneous Dirichlet boundary conditions, where the related eigenvalues \(\lambda_j\) are ordered by \(0 < \lambda_1 \leq \lambda_2 \leq\,\ldots\). The authors show that \((e_j)_{j=1}^{\infty}\) is the only orthonormal basis of \(L^2(\Omega)\) that provides an optimal approximation of arbitrary \(f\in H_0^1(\Omega)\) in the sense \[ \| f - \sum_{j=1}^n (f,e_j)\,e_j\|_{L^2(\Omega)}^2 \leq \frac{1}{\lambda_{n+1}}\, \| \nabla f\|_{L^2(\Omega)}^2 \] for all \(n\in \mathbb N\). This nice result solves an open problem raised by \textit{Y. Aflalo} et al. [C.R., Math., Acad. Sci. Paris 354, No. 12, 1155--1167 (2016; Zbl 1361.94022)].
0 references
optimal \(L^2\)-approximation
0 references
best orthonormal basis of \(L^2(\Omega)\)
0 references
eigenfunctions of Laplace operator
0 references
homogeneous Dirichlet boundary conditions
0 references
optimal error estimate
0 references