Adaptive synchronization for two different stochastic chaotic systems with unknown parameters via a sliding mode controller (Q2015550)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Adaptive synchronization for two different stochastic chaotic systems with unknown parameters via a sliding mode controller |
scientific article; zbMATH DE number 6306841
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Adaptive synchronization for two different stochastic chaotic systems with unknown parameters via a sliding mode controller |
scientific article; zbMATH DE number 6306841 |
Statements
Adaptive synchronization for two different stochastic chaotic systems with unknown parameters via a sliding mode controller (English)
0 references
23 June 2014
0 references
Summary: This paper investigates the problem of synchronization for two different stochastic chaotic systems with unknown parameters and uncertain terms. The main work of this paper consists of the following aspects. Firstly, based on the Lyapunov theory in stochastic differential equations and the theory of sliding mode control, we propose a simple sliding surface and discuss the occurrence of the sliding motion. Secondly, we design an adaptive sliding mode controller to realize the asymptotical synchronization in mean squares. Thirdly, we design an adaptive sliding mode controller to realize the almost surely synchronization. Finally, the designed adaptive sliding mode controllers are used to achieve synchronization between two pairs of different stochastic chaos systems (Lorenz-Chen and Chen-Lu) in the presence of the uncertainties and unknown parameters. Numerical simulations are given to demonstrate the robustness and efficiency of the proposed robust adaptive sliding mode controller.
0 references
0 references
0 references