The generalised Laplace operator and the topological characteristic of removable \(\overline{S}\)-singular sets of subharmonic functions (Q2030207)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The generalised Laplace operator and the topological characteristic of removable \(\overline{S}\)-singular sets of subharmonic functions |
scientific article; zbMATH DE number 7355812
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The generalised Laplace operator and the topological characteristic of removable \(\overline{S}\)-singular sets of subharmonic functions |
scientific article; zbMATH DE number 7355812 |
Statements
The generalised Laplace operator and the topological characteristic of removable \(\overline{S}\)-singular sets of subharmonic functions (English)
0 references
7 June 2021
0 references
Let \(D\subset\mathbb R^n\) be a domain, let \(u\in sh(D)\), \(u\not\equiv-\infty\), and let \(x^0\in D\setminus u^{-1}(-\infty)\). Define the upper \(\overline\Delta u(x^0)\) and the lower \(\underline\Delta u(x^0)\) Laplace operators \[\overline\Delta u(x^0):=2n\limsup_{r\to+0}\frac{\mathfrak{M}(x^0,r)-u(x^0)}{r^2},\quad \underline\Delta u(x^0):=2n\liminf_{r\to+0}\frac{\mathfrak{M}(x^0,r)-u(x^0)}{r^2},\] where \(\mathfrak{M}(x^0,r):=\frac1{\sigma_nr^{n-1}}\int_{S(x^0,r)}ud\sigma\). Analogously, we put \[\overline\Delta_Bu(x^0):=2(n+2)\limsup_{r\to+0}\frac{\mathfrak{N}(x^0,r)-u(x^0)}{r^2},\quad \underline\Delta_B u(x^0):=2(n+2)\liminf_{r\to+0}\frac{\mathfrak{N}(x^0,r)-u(x^0)}{r^2},\] where \(\mathfrak{N}(x^0,r):=\frac1{V_nr^n}\int_{B(x^0,r)}u(x)dx\). A set \(E\) is called \(\overline S\) (resp. \(\underline S\)) singular if there exists a function \(v\in sh(\mathbb R^n\)), \(v\not\equiv-\infty\), such \(\overline\Delta_Bv(x)=-\infty\) (resp. \(\underline\Delta_Bv(x)=-\infty\)), \(x\in E\), and \(\overline\Delta_Bv(x)=\underline\Delta_Bv(x):=+\infty\) if \(v(x)=-\infty\). The main results of the paper state that a closed set \(E\) is: -- \(\overline S\) singular if and only if \(E^0=\emptyset\); -- \(\underline S\) singular if and only if \(E\) has measure 0.
0 references
subharmonic function
0 references
generalised Laplace operator
0 references
Blaschke-Privalov's theorem
0 references