On the supremal version of the Alt-Caffarelli minimization problem (Q2039524)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On the supremal version of the Alt-Caffarelli minimization problem
scientific article

    Statements

    On the supremal version of the Alt-Caffarelli minimization problem (English)
    0 references
    0 references
    0 references
    5 July 2021
    0 references
    The authors consider the free boundary problem (P)\(_\Lambda\): \[m_\Lambda:=\min\{J_\Lambda(u):=\|\nabla u\|_\infty+\Lambda|\{u>0\}|:u\in \text{Lip}_1(\Omega)\},\] where \(\Lambda>0,\ |\{u>0\}|\) is the Lebesgue measure of the set \(\{x\in \Omega:u(x)>0\}\) and \[\text{Lip}_1(\Omega):= \{u\in W^{1,\infty}(\Omega)\,:u\ge 0\ \text{in}\ \Omega, \ u=1\ \text{on}\ \partial\Omega\}\] The main results include the existence and uniqueness of the non-constant solution on convex domains, the identification and the geometrical characterization of the variational infinity Bernoulli constant \[\Lambda_{\Omega,\infty}:=\inf\{\Lambda>0:\,(P)_\Lambda\ \text{admits a non-constant solution}\}.\]
    0 references
    0 references
    free boundary problems
    0 references
    Bernoulli constant
    0 references
    Lipschitz functions
    0 references
    convex domains
    0 references
    parallel sets
    0 references
    infinity Laplacian
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references