Global perturbation of nonlinear eigenvalues (Q2041944)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global perturbation of nonlinear eigenvalues |
scientific article; zbMATH DE number 7374853
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global perturbation of nonlinear eigenvalues |
scientific article; zbMATH DE number 7374853 |
Statements
Global perturbation of nonlinear eigenvalues (English)
0 references
26 July 2021
0 references
Let \(U\) and \(V\) be two Banach spaces and \(\mathcal{L}(\lambda,\mu):U\to V\) be a Fredholm operator of index \(0\) for any \((\lambda,\mu)\in [a,b]\times [c,d]\). Here \(\lambda\) is the spectral parameter on which \(\mathcal{L}\) depends holomorphically, as well as nonlinearly; while \(\mu\) is the perturbation parameter on which \(\mathcal{L}\) depends only continuously. This paper generalizes the classical theory of perturbation of eigenvalues to the operator surface \(\mathcal{L}\) satisfying the above listed hypotheses. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [\textit{T. Kato}, Perturbation theory for linear operators. Reprint of the corr. print. of the 2nd ed. 1980. Berlin: Springer-Verlag (1995; Zbl 0836.47009), Chapter 2, Section 5]).
0 references
eigenvalue perturbation
0 references
spectral parameter
0 references
perturbation parameter
0 references
generalized algebraic multiplicity
0 references
nonlinear spectral theory
0 references
Fredholm operators
0 references
intricate weighted eigenvalue problems
0 references
0 references
0 references
0 references
0 references