The orbit method for locally nilpotent infinite-dimensional Lie algebras (Q2042941)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The orbit method for locally nilpotent infinite-dimensional Lie algebras |
scientific article |
Statements
The orbit method for locally nilpotent infinite-dimensional Lie algebras (English)
0 references
22 July 2021
0 references
In this article the authors prove that the so-called orbit method generalizes to the infinite dimensional case. Namely, the authors show that given an (countably) infinite-dimensional locally nilpotent complex Lie algebra \(\mathfrak{n}\), then: \begin{itemize} \item[i)] each primitive ideal \(\mathcal{J}(\lambda)\) of the universal enveloping algebra \(\mathcal{U}(\mathfrak{n})\) corresponds to a certain linear form \(\lambda \in \mathfrak{n}^{\ast}\); \item[ii)] each primitive ideal \(\mathcal{I}(\lambda)\) of the symmetric algebra \(\mathcal{S}(\mathfrak{n})\) corresponds to a certain \(\lambda \in \mathfrak{n}^{\ast}\); \item[iii)] tha map \(\mathcal{I}(\lambda) \mapsto \mathcal{J}(\lambda)\) is a homeomorphism between the topological spaces \(\mathrm{PSpec} \left( \mathcal{S}(\mathfrak{n}) \right)\), the primitive Poisson spectrum of \(\mathcal{S}(\mathfrak{n})\), and \(\mathrm{JSpec} \left( \mathcal{U}(\mathfrak{n}) \right)\), the primitive spectrum of \(\mathcal{U}(\mathfrak{n})\). \end{itemize}
0 references
primitive ideals
0 references
finitary infinite-dimensional Lie algebras
0 references
locally nilpotent Lie algebras
0 references
Poisson algebras
0 references
centrally generated ideals
0 references
orbit method
0 references
0 references
0 references
0 references