The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents (Q2043751)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents |
scientific article; zbMATH DE number 7377602
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents |
scientific article; zbMATH DE number 7377602 |
Statements
The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents (English)
0 references
3 August 2021
0 references
In this paper the author proves boundedness of bilinear Fourier multiplier operator \(T(f,g)\) from \(B^{s(\cdot)}_{p_{1}(\cdot),q(\cdot)}(\mathbb{R}^n) \times B^{s(\cdot)}_{p_{2}(\cdot), q(\cdot)}(\mathbb{R}^n)\) to \(B^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb{R}^n)\) where \(\frac{1}{p_{1}(\cdot)}+\frac{1}{p_{2}(\cdot)}=\frac{1}{p(\cdot)}\) and \(s(\cdot) \in L^{\infty}(\mathbb{R}^n)\) is locally log-Hölder continuous.
0 references
variable exponent
0 references
bilinear Fourier multiplier operator
0 references
Besov space
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references