The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents (Q2043751)

From MaRDI portal





scientific article; zbMATH DE number 7377602
Language Label Description Also known as
English
The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents
scientific article; zbMATH DE number 7377602

    Statements

    The boundedness of bilinear Fourier multiplier operators in Besov spaces with variable exponents (English)
    0 references
    3 August 2021
    0 references
    In this paper the author proves boundedness of bilinear Fourier multiplier operator \(T(f,g)\) from \(B^{s(\cdot)}_{p_{1}(\cdot),q(\cdot)}(\mathbb{R}^n) \times B^{s(\cdot)}_{p_{2}(\cdot), q(\cdot)}(\mathbb{R}^n)\) to \(B^{s(\cdot)}_{p(\cdot),q(\cdot)}(\mathbb{R}^n)\) where \(\frac{1}{p_{1}(\cdot)}+\frac{1}{p_{2}(\cdot)}=\frac{1}{p(\cdot)}\) and \(s(\cdot) \in L^{\infty}(\mathbb{R}^n)\) is locally log-Hölder continuous.
    0 references
    variable exponent
    0 references
    bilinear Fourier multiplier operator
    0 references
    Besov space
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers