Applications of the formula of Faà di Bruno: combinatorial identities and monotonic functions (Q2044611)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Applications of the formula of Faà di Bruno: combinatorial identities and monotonic functions |
scientific article; zbMATH DE number 7380201
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Applications of the formula of Faà di Bruno: combinatorial identities and monotonic functions |
scientific article; zbMATH DE number 7380201 |
Statements
Applications of the formula of Faà di Bruno: combinatorial identities and monotonic functions (English)
0 references
10 August 2021
0 references
Lah numbers are defined for nonnegative integers \(n\) and \(k\) by \[ L(0,0)=1, \quad L(n,0)=L(0,k)=0, \quad L(n,k) = \frac{(n-1)!}{(k-1)!} \binom{n}{k}, \] for \(n, k \in \mathbb{N}\). These numbers satisfy the recurrence relation \[ L(n+1,k) = (n+k) L(n,k) + L(n,k-1). \] The authors present some identities involving Lah numbers and Stirling numbers of the first kind, Lah numbers and harmonic numbers, and harmonic numbers. In addition, the authors show that for all \(s>0\), \(t \in [-1,1]\), and \(\lambda \in \mathbb{R}\), the function \(F_{\lambda,s,t}\), defined by \[ F_{\lambda,s,t} (x) = \frac{x^\lambda}{(x-1)^{2s} (x^2-2tx+1)^s}, \] satisfies the condition \((-1)^n {F_{\lambda,s,t}}^{(n)} (x) \geq 0\), for all \(n \in \mathbb{N}_0\) and \(x \in (1,\infty)\), that is, \(F_{\lambda,s,t}\) is completely monotonic on \((1,\infty)\), if and only if \(\lambda \leq 4s\).
0 references
formula of Faà di Bruno
0 references
combinatorial identities
0 references
Lah numbers
0 references
Stirling numbers
0 references
harmonic numbers
0 references
infinite series
0 references
absolutely monotonic functions
0 references
completely monotonic functions
0 references
0.86714494
0 references
0.86587256
0 references
0.86006194
0 references
0.8590102
0 references
0.85881627
0 references