Applications of the formula of Faà di Bruno: combinatorial identities and monotonic functions (Q2044611)

From MaRDI portal





scientific article; zbMATH DE number 7380201
Language Label Description Also known as
English
Applications of the formula of Faà di Bruno: combinatorial identities and monotonic functions
scientific article; zbMATH DE number 7380201

    Statements

    Applications of the formula of Faà di Bruno: combinatorial identities and monotonic functions (English)
    0 references
    0 references
    0 references
    10 August 2021
    0 references
    Lah numbers are defined for nonnegative integers \(n\) and \(k\) by \[ L(0,0)=1, \quad L(n,0)=L(0,k)=0, \quad L(n,k) = \frac{(n-1)!}{(k-1)!} \binom{n}{k}, \] for \(n, k \in \mathbb{N}\). These numbers satisfy the recurrence relation \[ L(n+1,k) = (n+k) L(n,k) + L(n,k-1). \] The authors present some identities involving Lah numbers and Stirling numbers of the first kind, Lah numbers and harmonic numbers, and harmonic numbers. In addition, the authors show that for all \(s>0\), \(t \in [-1,1]\), and \(\lambda \in \mathbb{R}\), the function \(F_{\lambda,s,t}\), defined by \[ F_{\lambda,s,t} (x) = \frac{x^\lambda}{(x-1)^{2s} (x^2-2tx+1)^s}, \] satisfies the condition \((-1)^n {F_{\lambda,s,t}}^{(n)} (x) \geq 0\), for all \(n \in \mathbb{N}_0\) and \(x \in (1,\infty)\), that is, \(F_{\lambda,s,t}\) is completely monotonic on \((1,\infty)\), if and only if \(\lambda \leq 4s\).
    0 references
    0 references
    formula of Faà di Bruno
    0 references
    combinatorial identities
    0 references
    Lah numbers
    0 references
    Stirling numbers
    0 references
    harmonic numbers
    0 references
    infinite series
    0 references
    absolutely monotonic functions
    0 references
    completely monotonic functions
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references