On second moment of Selberg zeta-function for \(\sigma =1\) (Q2047398)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On second moment of Selberg zeta-function for \(\sigma =1\) |
scientific article; zbMATH DE number 7383834
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On second moment of Selberg zeta-function for \(\sigma =1\) |
scientific article; zbMATH DE number 7383834 |
Statements
On second moment of Selberg zeta-function for \(\sigma =1\) (English)
0 references
19 August 2021
0 references
For the Selberg zeta function \(Z(s)\) of the modular group, the authors first prove \(Z^{\pm1}(1+it)\ll\log T\) as \(T\to\infty\) and that both the second moment and its reciprocal on \(\Re(s)=1\) exist satisfying \[ \frac1T\int_1^T|Z(1+it)|^{\pm2}dt \ll\frac{\log^2T}{(\log\log T)^{2-\varepsilon}} \] for any \(\varepsilon>0\) as \(T\to\infty\). Then by using this theorem they deduce \[ \lim_{T\to\infty}\frac1{2T}\int_{-T}^T|Z(1+it)|^2dt =\sum_{n=1}^\infty\frac{a_n^2}{y_n^2} \] and that \[ \lim_{T\to\infty}\frac1{T}\int_{1}^T|Z(1+it)|^{-2}dt =\sum_{n=1}^\infty\frac{b_n^2}{y_n^2}, \] where the Dirichlet series expression of the Selberg zeta function and its reciprocal are denoted by \[ Z(s)=\sum_{n=1}^\infty\frac{a_n}{y_n^s}\quad(\Re(s)>1) \] and \[ Z^{-1}(s)=\sum_{n=1}^\infty\frac{b_n}{y_n^s}\quad(\Re(s)>1) \] with \(1=y_1<y_2<y_3\cdots\).
0 references
Selberg zeta function
0 references
second moment
0 references
mean value theorems
0 references
Beurling zeta function
0 references
0 references
0 references
0 references
0.8988786
0 references
0.89791405
0 references
0.8961721
0 references
0.88678885
0 references
0.88567686
0 references
0.88188004
0 references
0.87678397
0 references
0.8765645
0 references