Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces (Q2053655)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces |
scientific article; zbMATH DE number 7435689
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces |
scientific article; zbMATH DE number 7435689 |
Statements
Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces (English)
0 references
30 November 2021
0 references
The paper under review is concerned with Fourier multipliers satisfying smoothness assumptions in bi-parameter Besov spaces. Main results are bi-parameter analogues of Hörmander-type multiplier theorems on Lebesgue spaces \(L^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})\) for \(1<p< \infty\) and on product Hardy spaces \(H^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})\) for \(0<p\leq 1\). These results improve earlier results for multipliers in bi-parameter Sobolev spaces. The sharpness of their bi-parameter Besov space assumptions is also obtained in the paper.
0 references
multiplier
0 references
bi-parameter Besov space
0 references