Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces (Q2053655)

From MaRDI portal





scientific article; zbMATH DE number 7435689
Language Label Description Also known as
English
Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces
scientific article; zbMATH DE number 7435689

    Statements

    Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces (English)
    0 references
    0 references
    0 references
    0 references
    30 November 2021
    0 references
    The paper under review is concerned with Fourier multipliers satisfying smoothness assumptions in bi-parameter Besov spaces. Main results are bi-parameter analogues of Hörmander-type multiplier theorems on Lebesgue spaces \(L^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})\) for \(1<p< \infty\) and on product Hardy spaces \(H^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})\) for \(0<p\leq 1\). These results improve earlier results for multipliers in bi-parameter Sobolev spaces. The sharpness of their bi-parameter Besov space assumptions is also obtained in the paper.
    0 references
    0 references
    multiplier
    0 references
    bi-parameter Besov space
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references