On the extreme values of \(M/M/m\) queueing systems (Q2059046)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the extreme values of \(M/M/m\) queueing systems |
scientific article; zbMATH DE number 7442616
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the extreme values of \(M/M/m\) queueing systems |
scientific article; zbMATH DE number 7442616 |
Statements
On the extreme values of \(M/M/m\) queueing systems (English)
0 references
13 December 2021
0 references
The paper under review considers a stationary and ergodic \(M/M/m\) queueing system. Let \(t_0=0, t_1, \dots\) be the arrival moments, and let \(W_n\) denote the waiting time of the \(n\)th arriving customer at the moment of arrival, \(W_0=0\). The author establishes asymptotic theorems for the probability distributions of the following characteristics: \(\overline{W}(t)=\sup_{0\leq t_k\leq t}W_k(s)\), \(\overline{W}_n=\overline{W}(t_n)=\max_{1\leq k\leq n}W_k\) as \(t\to\infty\) and \(n\to\infty\).
0 references
extreme values
0 references
\(M/M/m\) queueing system
0 references
limit theorem
0 references
0 references
0 references
0.9578712
0 references
0.93537676
0 references
0.9201301
0 references
0 references
0.91044617
0 references
0.9098606
0 references
0.9049725
0 references
0.9048738
0 references
0.9004984
0 references