Singularly perturbed ordinary differential equation with turning point and interior layer (Q2062110)

From MaRDI portal





scientific article; zbMATH DE number 7450565
Language Label Description Also known as
English
Singularly perturbed ordinary differential equation with turning point and interior layer
scientific article; zbMATH DE number 7450565

    Statements

    Singularly perturbed ordinary differential equation with turning point and interior layer (English)
    0 references
    0 references
    22 December 2021
    0 references
    The authors consider a linear two-point boundary value problem for singularly perturbed ordinary differential equation with a turning point at \(x=0\) of the form \[ \varepsilon y_{\varepsilon}''(x) + xy_{\varepsilon}'(x) - xy_{\varepsilon}(x) = f_{\varepsilon}(x), \quad -1\leq x\leq 1, \] \[ y_{\varepsilon}(-1) = a, \quad y_{\varepsilon}(1) = b, \] where \(0<\varepsilon\ll1\) and \(f_{\varepsilon}(x)=\sum\limits_{k=0}^{\infty}\varepsilon^k f_k(x),\) \(f_k\in C^{\infty}[-1,1]\). Using the boundary layer method of Goldenveizer-Vishik-Lyusternik-Vasilyeva-Imanalieva, the uniform asymptotic expansion in the parameter \(\varepsilon\) of the solutions with and inner layer to the Dirichlet problem formulated above was constructed.
    0 references
    0 references
    turning point
    0 references
    inner layer
    0 references
    singular perturbed
    0 references
    asymptotic
    0 references
    method of boundary layer function
    0 references
    two point problem
    0 references
    small parameter
    0 references
    ordinary differential equation
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references