Some inequalities for the maximum modulus of rational functions (Q2068265)

From MaRDI portal





scientific article; zbMATH DE number 7459470
Language Label Description Also known as
English
Some inequalities for the maximum modulus of rational functions
scientific article; zbMATH DE number 7459470

    Statements

    Some inequalities for the maximum modulus of rational functions (English)
    0 references
    0 references
    0 references
    0 references
    19 January 2022
    0 references
    Summary: For a polynomial \(p \left(z \right)\) of degree \(n\), it follows from the maximum modulus theorem that \(\max_{\left|z\right| = R \geq 1} \left|p \left(z \right)\right|\leq R^n \max_{\left|z \right| = 1}\left| p \left(z \right)\right|\). It was shown by \textit{N. C. Ankeny} and \textit{T. J. Rivlin} [Pac. J. Math. 5, 849--852 (1955; Zbl 0067.01001)] that if \(p \left(z \right)\neq 0\) for \(\left| z\right|<1\), then \(\max_{\left| z\right| = R \geq 1}\left| p \left(z \right)\right| \leq \left(\left(R^n + 1\right) / 2\right) \max_{\left| z\right| = 1}\left| p \left(z \right)\right|\). In 1998, \textit{N. K. Govil} and \textit{R. N. Mohapatra} [in: Approximation theory. In memory of A. K. Varma. New York, NY: Marcel Dekker. 255--263 (1998; Zbl 0902.41011)] extended the above two inequalities to rational functions, and in this paper, we study the refinements of these results of Govil and Mohapatra.
    0 references
    maximum modulus theorem
    0 references
    inequalities
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references