A numerical method for the variable-order time-fractional wave equations based on the H2N2 approximation (Q2071879)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A numerical method for the variable-order time-fractional wave equations based on the H2N2 approximation |
scientific article; zbMATH DE number 7466778
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A numerical method for the variable-order time-fractional wave equations based on the H2N2 approximation |
scientific article; zbMATH DE number 7466778 |
Statements
A numerical method for the variable-order time-fractional wave equations based on the H2N2 approximation (English)
0 references
31 January 2022
0 references
Summary: Aiming at the initial boundary value problem of variable-order time-fractional wave equations in one-dimensional space, a numerical method using second-order central difference in space and H2N2 approximation in time is proposed. A finite difference scheme with second-order accuracy in space and \(3-\gamma^\ast\) order accuracy in time is obtained. The stability and convergence of the scheme are further discussed by using the discrete energy analysis method. A numerical example shows the effectiveness of the results.
0 references
0 references
0 references
0.9070041
0 references
0.9060126
0 references
0.9041489
0 references
0.9036725
0 references
0.8989035
0 references
0.89738554
0 references
0.89625144
0 references
0.89554274
0 references