On the explicit representation of the trace space \(H^{\frac{3}{2}}\) and of the solutions to biharmonic Dirichlet problems on Lipschitz domains via multi-parameter Steklov problems (Q2072233)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On the explicit representation of the trace space \(H^{\frac{3}{2}}\) and of the solutions to biharmonic Dirichlet problems on Lipschitz domains via multi-parameter Steklov problems
scientific article

    Statements

    On the explicit representation of the trace space \(H^{\frac{3}{2}}\) and of the solutions to biharmonic Dirichlet problems on Lipschitz domains via multi-parameter Steklov problems (English)
    0 references
    0 references
    0 references
    26 January 2022
    0 references
    Let \(\Omega\) be a bounded domain in \(\mathbb R^N\), \(N\geq 2\), of class \(C^{0,1}\), and \(\sigma\in\big(-\frac{1}{N-1},1\big)\). The following biharmonic Steklov problems are introduced: (\(BS_{\mu}\)): \(\Delta^2v=0\) in \(\Omega\) and \[(1-\sigma)\frac{\partial^2v}{\partial \nu^2}+\sigma\Delta v=\lambda(\mu)\frac{\partial v}{\partial \nu},\quad -(1-\sigma)\text{div}_{\partial\Omega}(D^2v\cdot\nu)_{\partial\Omega}-\frac{\partial\Delta v}{\partial \nu}= \mu v\text{ on }\partial\Omega,\] and (\(BS_{\lambda}\)): \(\Delta^2u=0\) in \(\Omega\) and \[(1-\sigma)\frac{\partial^2u}{\partial \nu^2}+\sigma\Delta u=\lambda\frac{\partial u}{\partial \nu},\quad -(1-\sigma)\text{div}_{\partial\Omega}(D^2u\cdot\nu)_{\partial\Omega}-\frac{\partial\Delta u}{\partial\nu}=\mu(\lambda)u\text{ on }\partial\Omega,\] where \(\lambda, \mu \in\mathbb R\) are fixed. For \(u,v \in H^2(\Omega)\), set \[\mathcal Q_{\sigma}(u,v)=(1-\sigma)\int_{\Omega}D^2u:D^2v\, dx+\sigma\int_{\Omega} \Delta u\Delta v \,dx\] where \(D^2u:D^2v\) denotes the Frobenius product of the Hessians matrices. The weak formulations of problems (\(BS_{\mu}\)) and (\(BS_{\lambda}\)) read, respectively: \[(1)\quad \mathcal Q_{\sigma}(v,\varphi)-\mu\int_{\partial\Omega} v\varphi ds=\lambda(\mu)\int_{\partial\Omega} \frac{\partial v}{\partial\nu}\frac{\partial\varphi}{\partial\nu}ds \quad\forall \varphi\in H^2(\Omega).\] and \[(2)\quad \mathcal Q_{\sigma}(u,\varphi)-\lambda\int_{\partial\Omega} \frac{\partial u}{\partial \nu}\frac{\partial \varphi}{\partial \nu}ds=\mu(\lambda)\int_{\partial\Omega}u\varphi ds \quad\forall \varphi\in H^2(\Omega).\] It is proved that, when \( \mu<0\), problem (1) has a non decreasing sequence of real eigenvalues \(\{\lambda_j(\mu) \}_{j=1}^{\infty}\). Moreover, a suitable normalization \(\{\hat{v}_{j,\mu}\}_{j=1}^{\infty}\) of the system of corresponding eigenfunctions \(\{v_{j,\mu}\}_{j=1}^{\infty}\), form a Hilbert basis of \(L^2(\partial \Omega)\) (Theorem 3.3). A similar result is obtained for problem (2). Let \(\eta_1\) be the first eigenvalue of the problem: \[ \mathcal Q_{\sigma}(u,\varphi)=\eta\int_{\partial\Omega} \frac{\partial u}{\partial \nu}\frac{\partial \varphi}{\partial \nu}\,ds \quad \forall\varphi\in H^2(\Omega)\cap H^1_o(\Omega). \] If \(\lambda<\eta_1\), problem (2) has a non decreasing sequence of eigenvalues \(\{\mu_j(\lambda)\}_{j=1}^{\infty},\) which gives rise to a Hilbert basis \(\{\hat{u}_{j,\lambda} \}_{j=1}^{\infty}\) of \(L^2(\partial\Omega)\) (Theorem 3.10). The following trace-spaces are defined: \[\mathcal S^{\frac{3}{2}}(\partial \Omega)= \mathcal S^{\frac{3}{2}}_{\lambda}(\partial\Omega)= \left\{f\in L^2(\partial\Omega):f=\sum_{j=1}^{\infty}\hat{a}_j\hat{u}_{j,\lambda} \text{ with }\left(\sqrt{|\mu_j(\lambda)|}\hat{a}_j\right)_{j=1}^{\infty} \in \ell^2 \right\}\] and \[\mathcal S^{\frac{1}{2}}(\partial \Omega)= \mathcal S^{\frac{1}{2}}_{\mu}(\partial\Omega)= \left\{f\in L^2(\partial\Omega):f=\sum_{j=1}^{\infty}\hat{b}_j\hat{v}_{j,\mu} \text{ with }\left(\sqrt{|\lambda_j(\mu)|}\hat{b}_j\right)_{j=1}^{\infty} \in \ell^2 \right\}\] They are independant of \(\lambda\) and \(\mu\), are endowed with the natural norms, and coincide with the usual trace-spaces \(H^{\frac{3}{2}}(\partial\Omega)\) and \(H^{\frac{1}{2}}(\partial\Omega),\) when \(\Omega\) is of class \(C^{2,1}\). These results are applied to the Dirichlet problem (Section 4.1). The particular cases when \(\Omega\) is the unit ball and \(\sigma=0\), \(\mu>0\), and \(\lambda>\eta_1\) are also discussed.
    0 references
    0 references
    bi-Laplacian
    0 references
    Steklov boundary conditions
    0 references
    multi-parameter eigenvalue problems
    0 references
    biharmonic Steklov eigenvalues
    0 references
    Fourier series
    0 references
    trace spaces
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references