Discrete tori and trigonometric sums (Q2082309)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Discrete tori and trigonometric sums |
scientific article; zbMATH DE number 7595997
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Discrete tori and trigonometric sums |
scientific article; zbMATH DE number 7595997 |
Statements
Discrete tori and trigonometric sums (English)
0 references
4 October 2022
0 references
For \(v=(v_1,\cdots, v_n)\in \mathbb{Z}^n\) set \(|v|=|v_1|+\cdots +|v_n|\) and \(\bar{v}=(|v_1|,\cdots, |v_n|)\). For \(v\in \mathbb{Z}^n_+\) set \(v!=v_1!\cdots v_n!\). Fix an integer valued \(n\times n\) matrix \(M\) with \(m:=\text{det}M>1\). Let \(M^*\) be the transpose of \(M\). For any non-negative integer \(s\) set \[ C_s(M)=\sum_{v\in M\mathbb{Z}^n, z\in \mathbb{Z}^n_+, |v|+2|z|=s} \frac{s!}{z! (\bar{v}+z)!}. \] The main result of this paper states that for the torus \[ W=(M^*)^{-1}\mathbb{Z}^n/\mathbb{Z}^n \] and for any non-negative integer \(s\), it holds that \[ \sum_{w\in W}\left(\sum_{k=1}^n \cos 2\pi w_k \right)^s=\frac{m}{2^s}C_s(M). \]
0 references
trace formula
0 references
heat kernel
0 references
Markov chain
0 references
discrete torus
0 references
trigonometric sum
0 references
0.88391805
0 references
0.8765962
0 references
0.86894846
0 references
0.8668871
0 references