Gradient estimates of parabolic Cauchy-Dirichlet problems on Morrey-Banach spaces (Q2091753)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Gradient estimates of parabolic Cauchy-Dirichlet problems on Morrey-Banach spaces |
scientific article; zbMATH DE number 7610713
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Gradient estimates of parabolic Cauchy-Dirichlet problems on Morrey-Banach spaces |
scientific article; zbMATH DE number 7610713 |
Statements
Gradient estimates of parabolic Cauchy-Dirichlet problems on Morrey-Banach spaces (English)
0 references
2 November 2022
0 references
The paper provides gradient estimates in Morrey type spaces for the solutions of the Cauchy-Dirichlet problem for divergence form linear parabolic equations with discontinuous coefficients. Precisely, weak solutions of the equation \[ u_t(x,t)-\sum_{\alpha,\beta=1}^n D_\alpha\big(a^{\alpha\beta}(x,t)D_\beta u(x,t)\big)=\sum_{\alpha=1}^n D_\alpha f^\alpha(x,t),\quad (x,t)\in\Omega_T \] are considered with zero data on the parabolic boundary of the cylinder \(\Omega_T=\Omega\times (0,T).\) Assuming that the boundary of \(\Omega\) is Reifenberg flat and the principal coefficients \(a^{\alpha\beta}\) are measurable with respect to one spatial variable and of small bounded mean oscillation in the remaining space and time variables, the author derives gradient estimates for the weak solutions in Lorentz-Morrey, Orlicz-Morrey and Morrey spaces with variable exponents.
0 references
Morrey spaces
0 references
Lorentz spaces
0 references
Orlicz spaces
0 references
variable Lebesgue spaces
0 references
extrapolation theory
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references