Fourier uniqueness pairs of powers of integers (Q2098199)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Fourier uniqueness pairs of powers of integers
scientific article

    Statements

    Fourier uniqueness pairs of powers of integers (English)
    0 references
    0 references
    0 references
    17 November 2022
    0 references
    Summary: We prove, under certain conditions on \((\alpha, \beta)\), that each Schwartz function \(f\) such that \(f (\pm n^\alpha) = \widehat{f} (\pm n^\beta) = 0\) for all \(n \geq 0\) must vanish identically, complementing a series of recent results involving uncertainty principles, such as the pointwise interpolation formulas by \textit{D. Radchenko} and \textit{M. Viazovska} [Publ. Math., Inst. Hautes Étud. Sci. 129, 51--81 (2019; Zbl 1455.11075)] and the Meyer-Guinnand construction of self-dual crystaline measures (see [\textit{Y. Meyer}, Rev. Mat. Iberoam. 33, No. 3, 1025--1036 (2017; Zbl 1384.42009)]).
    0 references
    Fourier transform, Fourier uniqueness pair, uncertainty principle
    0 references

    Identifiers