The syzygies of the ideal \((x_1^N, x_2^N, x_3^N, x_4^N)\) in the hypersurface ring defined by \(x_1^n + x_2^n + x_3^n + x_4^n\) (Q2099258)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The syzygies of the ideal \((x_1^N, x_2^N, x_3^N, x_4^N)\) in the hypersurface ring defined by \(x_1^n + x_2^n + x_3^n + x_4^n\) |
scientific article; zbMATH DE number 7622332
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The syzygies of the ideal \((x_1^N, x_2^N, x_3^N, x_4^N)\) in the hypersurface ring defined by \(x_1^n + x_2^n + x_3^n + x_4^n\) |
scientific article; zbMATH DE number 7622332 |
Statements
The syzygies of the ideal \((x_1^N, x_2^N, x_3^N, x_4^N)\) in the hypersurface ring defined by \(x_1^n + x_2^n + x_3^n + x_4^n\) (English)
0 references
23 November 2022
0 references
Lefschetz properties
0 references
matrix factorization
0 references
maximal Cohen-Macaulay module
0 references
order ideal
0 references
rings of finite CM-type
0 references
syzygy
0 references
Ulrich module
0 references
0 references
0 references
0 references